## CO VALOR:

## **Smart glass**

## **C-DNECTUS**

- Energetically autonomous light intensity modulator using liquid crystals
- Response in milliseconds with spatial resolution, only the illuminated area switches



### KEYWORDS

- o Smart window
- Liquid crystal
- o Photovoltaic

### PATENTS

o EP17186647 17th August 2017

### INVENTORS

o Thomas HEISER et al. **ICube Laboratory UMR 7357** 

### TECHNO-STATUS

### □ Under Development

- 334 000 euros ongoing Conectus investment for scale up
- planned project end date: July 2019
- open for co-conception with an industrial partner

## TECHNOLOGY OF

Using semiconductors as photon-absorbing layer together with appropriate interfacial layers allowing the development of an efficient and energetically autonomous device called Photovoltaic Spatial Light Modulator (PLSM):



## APPLICATIONS CONS



- As smart glass/window in various industrial sectors
  - Road safety helmets > AR/VR glasses
  - Tactical equipment
  - Industrial safety
  - Architecture
- Automotive industry
  - Sports eyewear







# **INNOVATION ADVANTAGES**

- Autonomous device
  - Avoiding power supply dependency
  - o The device is driven by light intensity
  - 40% absolute light reduction, e.g. [60%-20%] or [45%-5%]
- Short time response
  - Milliseconds
- Low-cost process and large surface compatibility
  - o Room temperature and printing technique
  - o Glass or plastic/flexible support
- Spatial resolution:
  - o The drop in transparency is restricted to areas exposed to sunlight while shaded areas remain transparent

## **DEVELOPMENT STATUS**



- Proof of concept has been done on a laboratory prototype (1x1 cm²)
  - Scale up is ongoing (10x10 cm²)

CONTACT I Veronika VALLION ● Business Developer ● veronika.vallion@satt.conectus.fr ● +33 (0)6 10 07 00 19









